Node 节点
class Node {
// static final 修饰的常量
static final Node SHARED = new Node();
static final Node EXCLUSIVE = null;
// 等待状waitStatus的取值
// static final int INITIAL = 0;
static final int CANCELLED = 1;
static final int SIGNAL = -1;
// 节点在等待队列中, 等待其它线程调用condition.signal().
// 当其它线程调用condition.signal()之后, 该节点会从等待队列转移到同步队列中
static final int CONDITION = -2;
static final int PROPAGATE = -3;
// 等待状态
volatile int waitStatus;
volatile Node prev;
volatile Node next;
volatile Thread thread;
Node nextWaiter;
// head和tail对应
private transient volatile Node head;
private transient volatile Node tail;
/**
* 加锁的数量
* 对一个线程多次加可重入锁时, 该值会增加
*/
private volatile int state;
static final long spinForTimeoutThreshold = 1000L;
// Unsafe对象
private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final long stateOffset;
private static final long headOffset;
private static final long tailOffset;
private static final long waitStatusOffset;
private static final long nextOffset;
final boolean isShared() {
return nextWaiter == SHARED;
}
final Node predecessor() throws NullPointerException {
Node p = prev;
if (p == null)
throw new NullPointerException();
else
return p;
}
// Used by SHARED
Node() {
}
// Used by addWaiter
Node(Thread thread, Node mode) {
this.nextWaiter = mode;
this.thread = thread;
}
// Used by Condition
Node(Thread thread, int waitStatus) {
this.waitStatus = waitStatus;
this.thread = thread;
}
}
Condition 对象
Condition 类
public class ConditionObject implements Condition, java.io.Serializable {
// 等待队列的第一个节点
private transient Node firstWaiter;
// 等待队列(condition queue)的最后一个结点
private transient Node lastWaiter;
/** Mode meaning to reinterrupt on exit from wait */
private static final int REINTERRUPT = 1;
/** Mode meaning to throw InterruptedException on exit from wait */
private static final int THROW_IE = -1;
private static final long serialVersionUID = 1173984872572414699L;
// 唯一构造器, 默认情况下firstWaiter和lastWaiter都为null
public ConditionObject() { }
}
addConditionWaiter() 方法(添加到等待队列)
功能:将当前线程封装成Node节点添加到等待队列(condition queue)的末尾
执行流程:
首次调用 await() 方法时,等待队列中 firstWaiter 和 lastWaiter 均为 null。将当前线程封装成 Node 后,为 firstWaiter 和 lastWaiter 赋值
非首次调用 await() 方法时,TODO
private Node addConditionWaiter() {
// 1. 首次调用时, lastWaiter为null
// 2. 非首次调用时, 找到等待队列中的最后一个Node节点
Node t = lastWaiter;
// 这段的含义是什么?
if (t != null && t.waitStatus != Node.CONDITION) {
unlinkCancelledWaiters();
t = lastWaiter;
}
// 为当前调用await()方法的线程创建Node节点
Node node = new Node(Thread.currentThread(), Node.CONDITION);
if (t == null)
firstWaiter = node;
else
t.nextWaiter = node;
lastWaiter = node;
return node;
}
release(int arg) 方法(释放锁)
功能:释放指定arg数量的可重入锁
执行流程:
- 调用tryRelease()方法,释放指定数量的锁
- 首次调用时,会释放掉全部的锁,此时tryRelease返回true。
- 非首次调用时,
public final boolean release(int arg) {
if (tryRelease(arg)) {
// head并不为null
Node h = head;
if (h != null && h.waitStatus != 0){
// 当前线程即将park()阻塞, 调用unpark()唤醒后续节点
unparkSuccessor(h);
}
return true;
}
return false;
}
// AQS中并没有真正意义上地实现tryRelease(), 而是交给子类
protected boolean tryRelease(int arg) {
throw new UnsupportedOperationException();
}
// ReentrantLock中对tryRelease()的实现
// tryRelease()的返回值表示当前线程是否释放掉锁, true表示释放掉锁, false表示还没有完全释放掉锁
protected final boolean tryRelease(int releases) {
// 对Node节点的state值减去指定的数: 释放指定数量的锁
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
// 如果state值为0, 那么
if (c == 0) {
free = true;
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}
private void unparkSuccessor(Node node) {
/*
* If status is negative (i.e., possibly needing signal) try
* to clear in anticipation of signalling. It is OK if this
* fails or if status is changed by waiting thread.
*/
int ws = node.waitStatus;
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0);
/*
* Thread to unpark is held in successor, which is normally
* just the next node. But if cancelled or apparently null,
* traverse backwards from tail to find the actual
* non-cancelled successor.
*/
Node s = node.next;
if (s == null || s.waitStatus > 0) {
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
if (s != null)
LockSupport.unpark(s.thread);
}
fullyRelease(Node node) 方法
执行流程:
- 调用 getState() 方法,获取 node 节点对应线程上可重入锁的次数(state值)
- 调用 release(savedState) 一次性全部释放掉添加的可重入锁
- 如果release()释放成功,返回释放掉的可重入锁的数量
- 如果release()释放失败,将当前线程的等待状态waitStatus设置为CANCELLED
final int fullyRelease(Node node) {
boolean failed = true;
try {
int savedState = getState();
if (release(savedState)) {
// 释放成功, 将标志为设置为false, 避免finally中将node的waitStatus状态设置为取消
failed = false;
return savedState;
} else {
throw new IllegalMonitorStateException();
}
} finally {
if (failed)
node.waitStatus = Node.CANCELLED;
}
}
await() 方法
执行流程:
对被中断的线程调用await()方法,产生中断异常
调用addConditionWaiter()方法,将当前线程加入等待队列
调用fullyRelease(node)方法,释放当前线程添加的可重入锁(针对绑定该Condition对象的那把锁,
Condition condition = lock.newCondition()
)调用 isOnSyncQueue(node) 方法,判断当前线程是否在同步队列中,对于首次调用的线程来说,必定返回false,因此进入while循环中,并调用LockSupport中的park方法将当前线程进行阻塞。
同步队列和等待队列似乎是同一个队列?只是通过Node节点的等待状态位waitStatus来进行区分吗?
public final void await() throws InterruptedException {
// 对被中断的线程调用await()方法, 产生异常
if (Thread.interrupted()){
throw new InterruptedException();
}
// 将当前线程添加到等待队列中
Node node = addConditionWaiter();
// 释放当前线程添加的全部的可重入锁
int savedState = fullyRelease(node);
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
// 调用LockSupport中的park()方法阻塞当前线程, 具体来说, this是Condition对象
LockSupport.park(this);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
}
// acquireQueued()中包含获取锁的操作
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null) // clean up if cancelled
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
}
final boolean isOnSyncQueue(Node node) {
// 状态为等待状态, 或者是等待队列的第一个, 说明不在同步队列中. 这是为什么?
// 首次调用时, 二者均满足, 直接返回false
if (node.waitStatus == Node.CONDITION || node.prev == null)
return false;
// 调用signalAll之后, 等待队列中的节点的waitStatus值会变成(第1个是自动生成的head节点)-1,-1,...,-1,0(最后一个是0). 被唤醒的线程只会从第2个节点开始, 因此上面判断如果node.prev == null, 说明是添加到等待队列中.
// 总结: 上面是添加到等待队列, 下面是从等待队列中唤醒
if (node.next != null) // If has successor, it must be on queue
return true;
/*
* node.prev can be non-null, but not yet on queue because
* the CAS to place it on queue can fail. So we have to
* traverse from tail to make sure it actually made it. It
* will always be near the tail in calls to this method, and
* unless the CAS failed (which is unlikely), it will be
* there, so we hardly ever traverse much.
*/
// 从同步队列的尾部向头部开始遍历来唤醒
// 这里不可能是添加到等待队列中, 因为waitStatus==-2时, 就会走第一个if判断条件返回
// 在正常情况下, 这里的作用仅仅判断了tail这个在等待队列中, 且tail.next == null的需要被唤醒的节点, 因为tail节点无法从上面的if中返回
return findNodeFromTail(node);
}
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
// 对于先进先出的公平锁, 那第一个被唤醒的线程对应第一个等待队列中的第一个node, 此时p = node.prev, 即p为head
// TODO: 但是对于非公平锁, p == head便有可能不成立吗? 好像也成立?
// tryAcquire(arg) 尝试获取锁
if (p == head && tryAcquire(arg)) {
// head节点向后移动
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
// 获取非公平锁
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
// state值为0才可以被线程去获取, 否则说明已经有线程占用了锁
int c = getState();
if (c == 0) {
// 通过CAS操作来尝试添加锁
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
// 如果当前线程是锁的拥有者, 获取可重入锁
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
// 除了上诉两种情况外, 不可以获取锁
return false;
}
signalAll() 方法
执行流程:
- 判断调用signalAll()方法的线程是否是锁的拥有者(鉴权)
- 调用doSignalAll()方法唤醒等待队列中的线程
- doSignalAll() 方法会清空等待队列,同时将链表中的节点一个个拆散
- 对等待队列中的每一个线程调用transferForSignal()方法
- 使用CAS操作,将线程的等待状态位由-2(CONDITION)设置为0。如果没有修改成功,说明signal()操作取消
public final void signalAll() {
// 判断调用signalAll的线程是否持有锁
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
Node first = firstWaiter;
if (first != null)
doSignalAll(first);
}
private void doSignalAll(Node first) {
// 等待队列靠firstWaiter和lastWaiter这两个指针, 这里相当于把等待队列清空
lastWaiter = firstWaiter = null;
// 等待队列从头到尾, 通过nextWaiter指针, 并不是next指针, 依次调用transferForSignal()方法
do {
Node next = first.nextWaiter;
first.nextWaiter = null;
transferForSignal(first);
first = next;
} while (first != null);
}
final boolean transferForSignal(Node node) {
/*
* If cannot change waitStatus, the node has been cancelled.
*/
if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
return false;
/*
* Splice onto queue and try to set waitStatus of predecessor to
* indicate that thread is (probably) waiting. If cancelled or
* attempt to set waitStatus fails, wake up to resync (in which
* case the waitStatus can be transiently and harmlessly wrong).
*/
// 返回node节点的前驱节点, 对于等待队列的链表头, 返回的是最初的那个tail, 目前tail已经指向最新入队的Node节点
Node p = enq(node);
int ws = p.waitStatus;
// 如果前驱节点的等待状态位大于0 或者 通过CAS操作无法将p对应的线程的ws设置为SIGNAL, 那么唤醒当前线程node.thread
if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL)){
// 唤醒node节点对应的线程
// 目前来看, 这里应该就是关键, 对应await()方法产生的LockSupport.park()
LockSupport.unpark(node.thread);
}
return true;
}
private Node enq(final Node node) {
for (;;) {
Node t = tail;
if (t == null) { // Must initialize
if (compareAndSetHead(new Node()))
tail = head;
} else {
// 在等待队列中的Node的prev和next均为null, 在这里才为Node的prev和next进行设置
node.prev = t;
// 设置不仅建立t和node的关系, 还将tail设置为新插入的node
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
// 判断Condition对象是否由当前对象持有, 即拥有锁才能调用Condition中的signal()和await()方法
protected final boolean isHeldExclusively() {
// While we must in general read state before owner,
// we don't need to do so to check if current thread is owner
return getExclusiveOwnerThread() == Thread.currentThread();
}